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Abstract

Based on the proposed formulation in Part I of this sequel (Ju, J.W., Sun, L.Z., Int. J. Solids Struct. 38, 183±201),

e�ective elastoplastic constitutive relations are implemented in this article for metal matrix composites (MMCs) with

randomly located and unidirectionally aligned spheroidal particles. First, we investigate the uniaxial elastoplastic

stress±strain behavior of MMCs. In particular, we perform comparisons among the theoretical uniaxial stress±strain

predictions, existing ®nite element results and experimental data for MMCs to illustrate the capability of the proposed

method. Furthermore, the e�ect of stress triaxiality is discussed under either the purely hydrostatic or axisymmetric

loading on the overall elastoplastic behavior of composites. The proposed initial e�ective yield surfaces for composites

are demonstrated and compared with those of the experimental data. As a special case of the incompressible ductile

material containing aligned spheroidal voids, the initial e�ective yield criterion is studied and compared with that of

mathematical upper bound. Finally, viscoplastic extension is brie¯y presented. Ó 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

In Ju and Sun (2000), a novel formulation is proposed to predict the overall elastoplastic behavior of
two-phase metal matrix composites (MMCs) containing randomly located and unidirectionally aligned
spheroidal inhomogeneities. Local micromechanics is employed to render a new expression for the ``ex-
terior-point'' Eshelby's tensor (Eshelby, 1957, 1959, 1961; Mura, 1987), which represents the strain and
stress in¯uences of an ellipsoidal inhomogeneity upon a material point located within the matrix phase. In
particular, explicit tensorial components of both the exterior- and interior-point Eshelby's tensors of a
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spheroidal inclusion are derived. The ensemble-average homogenization procedure is utilized to derive the
overall yield function of particle reinforced MMCs (PRMMCs) based on the probabilistic spatial distri-
bution of aligned spheroidal particles. The overall elastoplastic constitutive equations are characterized for
PRMMCs under three-dimensional loading and unloading conditions.

In this study, focus is upon the implementation of the framework proposed in Part I of this sequel.
Speci®cally, the overall uniaxial, purely hydrostatic and axisymmetric elastoplastic stress±strain responses
of PRMMCs are investigated. Comparisons of stress±strain curves and initial yield surfaces are performed
among our model predictions, experimental data, ®nite element results, and mathematical bounds for
PRMMCs and porous ductile materials to illustrate the capability of the proposed method. Finally, ex-
tension to viscoplasticity is brie¯y presented.

2. Uniaxial stress±strain behavior of PRMMCs

2.1. Governing equations

In material engineering, the uniaxial stress±strain relationship is often referred to as the mechanical
behavior of materials. In order to illustrate the micromechanics-based elastoplastic formulation for
PRMMCs in Part I of this sequel (Ju and Sun, 2000), it is of interest to consider the case of the uniaxial
stress loading. Speci®cally, the applied macroscopic stress �r can be written as

�r11 > 0; all other �rij � 0: �1�
Note that the aligned axisymmetric axis of spheroidal inclusions is denoted as the x1-axis.

From Eq. (64) in Part I (Ju and Sun, 2000), the macroscopic incremental elastic strain can be derived in
terms of the incremental uniaxial stress D�r11 as

�D��e
ij� �

D11 0 0
0 D12 0
0 0 D12

24 35D�r11; �2�

where the e�ective elastic compliance constants read

D11 � C�1�22 � C�2�22

C�1�11 � 2C�2�11

h i
C�1�22 � C�2�22

h i
ÿ C�1�12 C�1�21

; �3�

D12 � ÿ C�1�12 =2

C�1�11 � 2C�2�11

h i
C�1�22 � C�2�22

h i
ÿ C�1�12 C�1�21

: �4�

The components of the elastic tensors C�1�ij and C�2�ij have been de®ned in Eqs. (67) and (68) of Ju and Sun
(2000).

For the uniaxial loading, the e�ective yield function given by Eq. (81) in Ju and Sun (2000) becomes

�F ��r11; �ep� � �1ÿ /�
�����������������������
�T �1�11 � 2 �T �2�11

q
�r11 ÿ

��
2
3

q
�ry � h��ep�q�; �5�

where / denotes the volume fraction of particles, ry signi®es the initial yield stress, h and q designate the
linear and exponential isotropic hardening parameters, respectively, and �ep de®nes the e�ective equivalent
plastic strain. In addition, the second-rank tensors �T�1� and �T�2� have been de®ned in Eqs. (61) and (62) in
Part I of this sequel. Moreover, the overall incremental plastic strain de®ned by Eq. (84) in Ju and Sun
(2000) reduces to
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�D��p
ij� �

�1ÿ /� Dk�����������������������
�T �1�11 � 2 �T �2�11

q �T �1�11 � 2 �T �2�11 0 0

0 �T �1�12 0

0 0 �T �1�12

2664
3775; �6�

where Dk is the incremental plastic consistency parameter.
For the special case of the monotonically increasing uniaxial loading condition, the overall strain±stress

relationship can be derived by integrating Eqs. (2) and (6) as follows:

���ij� �
D11 0 0
0 D12 0
0 0 D12

24 35�r11 � �1ÿ /�k�����������������������
�T �1�11 � 2 �T �2�11

q �T �1�11 � 2 �T �2�11 0 0

0 �T �1�12 0

0 0 �T �1�12

2664
3775; �7�

where the positive plastic consistency parameter k �PDk is solved from the nonlinear equation obtained
by enforcing the plastic consistency condition �F � 0. Accordingly, k can be determined as

k � 1��������
2=3

p �1ÿ /�
�1ÿ /�

���������������������������������
3� �T �1�11 � 2 �T �2�11 �=2

q
�r11 ÿ ry

h

24 351=q

: �8�

Therefore, from Eq. (7), the overall stress±strain curves for PRMMCs can be computed in terms of the
volume fraction, aspect ratio, elastic properties of the reinforcements, as well as elastic and plastic pa-
rameters of the matrix material.

2.2. Numerical simulations and experimental comparisons

In this article, unless noted otherwise, the matrix material is taken as an aluminum alloy with Young's
modulus Em � 70 GPa, Poisson's ratio mm � 0:3, the initial uniaxial yield stress ry � 300 MPa, and the
linear and exponential isotropic hardening parameters h � 1000 MPa and q � 0:5. Furthermore, we em-
ploy Young's modulus Ep � 450 GPa and Poisson's ratio mp � 0:2 for the reinforcements (similar to the
elastic properties of the SiC particles).

To illustrate the overall elastoplastic stress±strain behavior of PRMMCs under uniaxial tension, we ®rst
perform simulations in Fig. 1(a)±(d). In particular, Fig. 1(a) shows that Young's modulus, the initial yield
strength and the plastic hardening modulus increase as the volume fraction of particles increases. This
demonstrates the strengthening e�ect of PRMMCs. It is recalled from Part I of this sequel that the near-
®eld direct particle interactions are not included, although the far-®eld interactions are accounted for.
Therefore, we should avoid high particle volume fractions. Fig. 1(b) displays the e�ect of reinforcement
shape on the mechanical behavior of PRMMCs with the same volume fraction of particles. The elasto-
plastic behavior of PRMMCs is dependent on the aspect ratio a of spheroidal particles, especially during
the plastic range. According to Fig. 1(b), PRMMCs reinforced with prolate spheroidal particles (a > 1) are
the most e�ective for the strengthening e�ect of composites. The above observation is in good agreement
with, for example, Bao et al. (1991), Lee and Mear (1991), Li (1992), Li and Ponte Castaneda (1994), and
Qiu and Weng (1995). The strengthening e�ect of PRMMCs containing aligned oblate spheroidal particles
is not signi®cant when compared to that of prolate particles. Again, from Part I, it is noted that extreme
values for the aspect ratio should be avoided.

It is of interest to consider the elastoplastic behavior of PRMMCs with di�erent contrast ratios in
Young's modulus between the constituents. Fig. 1(c) indicates that higher Young's modulus of particles
leads to higher elastic and plastic stress±strain responses and therefore more pronounced strengthening
e�ect. Since the particles are always assumed to be elastic, sti�er stress±strain response over the matrix
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Fig. 1. E�ects of (a) volume fractions, (b) aspect ratios, (c) Young's moduli, and (d) Poisson's ratios of particles on the normalized

uniaxial elastoplastic behavior of PRMMCs.
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response is observed. Even when Young's modulus of particles is the same as that of the matrix, the overall
yield strength and plastic work hardening rate are higher than those of the matrix material. However, if
Young's modulus of the particles is much lower than that of the matrix (e.g., Ep � 10 GPa and Em � 70
GPa), the composite behavior will eventually fall below the stress±strain curve of the matrix-only material.
In contrast, as seen from Fig. 1(d), there are no signi®cant di�erences in the stress±strain behavior when
Poisson's ratio of the particles varies.

Furthermore, in order to demonstrate the capability of the proposed formulation, we compare our
predictions with the experimental data reported by Christman et al. (1989a,b). In their experiments, uni-
axial stress±strain curves were recorded for the 2124 aluminum alloy reinforced with 13.2% SiC whiskers
(SiCw). It is noted that most whiskers become aligned right after the extrusion process during the fabri-
cation of PRMMCs. The aspect ratio of whiskers reported in their experiments is about 5. In general, the
shape of a whisker is more like a cylinder than a spheroid. Here, we follow the method proposed by Li and
Ponte Castaneda (1994) to simulate whiskers by spheroids. The volume of a whisker is the same as that of
an ``equivalent'' prolate spheroid such that the volume fraction of reinforcements remains the same for the
actual composite and the ``equivalent'' composite. The radius of the cross-section of a whisker is assumed
to be equal to the shorter semi-axis of a prolate spheroid. As a result, the aspect ratio of an ``equivalent''
spheroid is one and a half times of that of a whisker. Based on the general material descriptions docu-
mented in Christman et al. (1989a,b), Tvergaard (1990) and Hom (1992), the elastoplastic properties of the
matrix and the elastic properties of the SiC whiskers, respectively, are selected as Em � 60 GPa, mm � 0:3,
ry � 290 MPa, h � 700 MPa, q � 0:55, and Ep � 450 GPa, mp � 0:2.

Fig. 2 exhibits the comparisons among our theoretical predictions, the experimental data by Christman
et al. (1989a,b), and the ®nite element periodic unit-cell models (the overlapping and side-by-side cases) by
Hom (1992) for SiCw/Al composites. It is observed that the present predictions compare well with the
experimental data in the elastic range and in the latter part of the plastic range. The more noticeable

Fig. 2. Comparisons of uniaxial stress±strain responses with experimental data (Christman et al., 1989a,b) and FEM periodic unit-cell

models (Hom, 1992) for SiCw/Al composites.
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deviation between the predictions and experimental data is in the initial part of the plastic range. On the
other hand, the three-dimensional ®nite element simulations of Hom (1992) overestimate the stress±strain
behavior due to the constraints imposed by the periodic unit-cell models. The primary reason for the
overestimation of the present predictions at the initial yielding stage is due to thermal residual stresses in
PRMMCs produced by the mismatch of thermal expansion coe�cients between the constituents during
fabrication processes. In fact, as pointed out by several investigators such as Zahl and McMeeking (1991),
Povirk et al. (1991), and Levy and Papazian (1991), residual stresses reduce the ¯ow strengths of composites
at the beginning stage of yielding. Additional reasons for the overestimated yield strength include the lower
stress concentrations in the vicinity of the spheroidal particles than cylindrical whiskers with sharp edges,
the e�ects of partial misalignment and local clustering of whiskers, and the e�ects of overestimated elastic
sti�ness of composites.

Papazian and Adler (1990) also investigated the mechanical behavior of either SiC particulate-reinforced
or SiC whisker-reinforced 5456 aluminum alloy matrix composites. Fig. 3 shows the comparisons between
the present model, the experimental data and ®nite element periodic unit-cell models by Levy and Papazian
(1990). Following Papazian and Adler (1990) and Levy and Papazian (1990), the material properties are
chosen as Em � 73 GPa, mm � 0:33, ry � 230 MPa, h � 410 MPa, q � 0:4, Ep � 485 GPa and mp � 0:2.
Moreover, the mean aspect ratio of whiskers is 4:1. Therefore, the equivalent aspect ratio of spheroids is
taken as 1:5 times of that of whiskers for the reason discussed above. However, we employ the aspect ratio
of 1 (not 1:5) to represent the aspect ratio of SiC particulates because the reinforcements are not like
cylinders. It is seen from Fig. 3 that the agreement between our predictions and experimental data for
particulate reinforced MMCs is much better than that for whisker reinforced MMCs. This is in part due to
the fact that the present model becomes more accurate as the aspect ratio approaches one. We refer to
Section 3 of Ju and Sun (2000) for relevant discussions. Another possible reason is that the e�ects of
thermal residual stresses upon whisker composites are more signi®cant than those upon particulate com-

Fig. 3. Comparisons of uniaxial stress±strain responses with experimental data (Papazian and Adler, 1990) and FEM periodic unit-cell

models (Levy and Papazian, 1990) for SiCw/Al and SiCp/Al composites.
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posites during the initial yielding stage. An additional reason is that misalignment does exist for whiskers
but not for particulates. Furthermore, Christman et al. (1989b) indicated that e�ects of reinforcement
clustering on the overall stress±strain behavior of MMCs are markedly less pronounced for unit aspect
ratio than for whisker reinforcements. In addition, Fig. 3 exhibits the three-dimensional ®nite element
results of Levy and Papazian (1990) for both particulate and whisker reinforced MMCs with either stag-
gered or aligned array of periodic ®bers. We observe that the di�erence between our theoretical closed-form
predictions and ®nite element results for particulate reinforced MMCs is much less than that for whisker
reinforced MMCs. The simplicity and compactness of the proposed method is noted.

3. Mechanical behavior of PRMMCs under purely hydrostatic tension

The von Mises J2-theory is very popular in metal plasticity. A metal obeying the J2-theory will never
yield under the purely hydrostatic loading. However, the overall responses of PRMMCs under the purely
hydrostatic loading should exhibit plastic yielding behavior; see e.g., Qiu and Weng (1992). In this section,
we examine whether the present formulation is capable of predicting the elastoplastic behavior under the
purely hydrostatic tension.

In this special case, the macroscopic stresses can be simpli®ed as

�r11 � �r22 � �r33 � �rH > 0; �r12 � �r23 � �r31 � 0; �9�
where �rH denotes the hydrostatic tension. Following the assumption of isotropic hardening law, the ef-
fective yield criterion given in Eq. (81) by Ju and Sun (2000) can be written as

�F ��rH; �ep� � �1ÿ /�U�rH ÿ
��
2
3

q
�ry � h��ep�q�; �10�

where

U �
����������������������������������������������������������������������
�T �1�11 � 4 �T �1�12 � 4 �T �1�22 � 2 �T �2�11 � 4 �T �2�22

q
: �11�

Let us ®rst investigate the initial yield strength �rHy of PRMMCs subject to the purely hydrostatic
tension. By setting h � 0 and q � 0 in Eq. (10), the initial yield stress can be easily derived as

�rHy

ry

�
��������
2=3

p
�1ÿ /�U : �12�

From the expression of U, it can be shown that U goes to zero when the volume fraction of particles, /,
vanishes. This implies that the matrix material will never yield under hydrostatic loading. Therefore, the
present formulation does recover the traditional J2-plasticity theory when / � 0.

The normalized yield stresses �rHy=ry are plotted in Fig. 4(a)±(d) for di�erent volume fractions of par-
ticles, aspect ratios of particles and phase contrast ratios Ep=Em. It is clear that, with increasing volume
fractions of particles in Fig. 4(a), the PRMMCs become easier to yield regardless of the aspect ratios of
spheroidal particles. From Fig. 4(b), we observe that the yield stresses of PRMMCs under purely hydro-
static loading are not sensitive to the aspect ratios of oblate particles. It seems that, from Fig. 4(c), at a
lower volume fraction of particles (e.g., 5%), the maximum �rHy occurs when a is near 1:6 (prolate).
However, at a higher volume fraction (e.g., 20%), the �rHy values monotonically decrease when the aspect
ratios of prolate particles increase. In addition, Fig. 4(d) indicates that PRMMCs cannot yield when the
elastic properties of the two constituents are identical. The overall yield stresses decrease rapidly for any
particle volume fractions when the contrast ratio Ep=Em is not equal to 1.
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Fig. 4. E�ects of (a) volume fractions, (b) oblate aspect ratios, (c) prolate aspect ratios, and (d) Young's moduli of particles on the

normalized initial yield stresses of PRMMCs under pure hydrostatic loading.
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After PRMMCs reach plastic yielding, the overall incremental plastic strains take the form:

�D��p
ij� �

�1ÿ /� Dk
U

L11 0 0
0 L22 0
0 0 L22

24 35; �13�

where

L11 � �T �1�11 � 2 �T �1�12 � 2 �T �2�11 ; �14�
L22 � �T �1�12 � 2 �T �1�22 � 2 �T �2�22 : �15�

Eq. (13) is valid for any arbitrary loading and unloading step. Furthermore, under the monotonically
increasing loading condition, the overall stress±strain relationship can be expressed as

���ij� �
D11 � 2D12 0 0

0 D12 � D22 0
0 0 D12 � D22

24 35�rH � �1ÿ /�k
U

L11 0 0
0 L22 0
0 0 L22

24 35; �16�

where the ®rst term of the right-hand side in the above equation represents the elastic strains, the second
term is attributed to the plastic strains, and we have k �PDk. In addition, D11 and D12 are de®ned in Eqs.
(3) and (4), and

D22 �
C�1�11 � 2C�2�11

h i
=2

C�1�11 � 2C�2�11

h i
C�1�22 � C�2�22

h i
ÿ C�1�12 C�1�21

: �17�

The plastic consistency parameter can be computed as

k � 1��������
2=3

p �1ÿ /�

��������
3=2

p �1ÿ /�U�rH ÿ ry

h

" #1=q

: �18�

From Eq. (16), the plastic volumetric strain ��p
kk can be derived as

��p
kk � �1ÿ /�kU: �19�

With the help of �T �1�ij and �T �2�ij in Eqs. (42) and (43) of Part I of this sequel, the plastic volumetric strain is
indeed nonzero unless the volume fraction of particles reduces to zero in the case of the matrix-only ma-
terial with J2-plasticity theory. Therefore, even though the matrix material is plastically incompressible, the
composite as a whole is plastically compressible.

According to Eq. (16), the overall stress±strain curves of PRMMCs can be predicted for various volume
fractions, aspect ratios and Young's moduli of particles. Under the purely hydrostatic tension, Fig. 5(a)
shows that ��11 strains along the aligned axisymmetric axis of prolate spheroids increase during the elastic
phase. Subsequently, after yielding, ��11 strains gradually decrease and eventually become negative (com-
pressive). The reason for this behavior is that the plastic strains ��p

11 become negative once plastic yielding
occurs due to the fact that the magnitude of combined negative lateral plastic strains from the 22- and 33-
direction are greater than that from the 11-direction. However, the normalized stress±strain curves of �r22

vs. ��22 in Fig. 5(b) and �rH vs. ��kk in Fig. 5(c) display monotonic behavior without ``bend-over''. Here, ��kk

denotes the overall volumetric strain. In addition, PRMMCs with higher concentrations of particles are
sti�er during the elastic range. By contrast, after yielding, PRMMCs with lower volume fractions of
particles gradually become more e�ective in strengthening the stress±strain behavior under purely hydro-
static loading.
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Fig. 5. E�ects of volume fractions of particles on the normalized overall elastoplastic responses in the (a) 11-direction, (b) 22-direction,

and (c) volumetric component for PRMMCs under pure hydrostatic loading.
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Fig. 6. E�ects of aspect ratios of particles on the normalized overall elastoplastic responses in the (a) 11-direction, (b) 22-direction, and

(c) volumetric component for PRMMCs under pure hydrostatic loading.
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Fig. 6(a)±(c) exhibits the e�ects of aspect ratios of particles on the normalized overall stress±strain curves
under the purely hydrostatic loading for the 11-direction, 22-direction and volumetric component, re-
spectively. In particular, after yielding, Fig. 6(a)±(b) displays that ��11 strain and ��22 strain gradually decrease
and eventually become negative along the longer axes of the prolate (Fig. 6(a), a � 5) and oblate (Fig. 6(b),
a � 0:5) spheroids, respectively. The ``bend-over'' phenomenon does not occur for PRMMCs with
spherical particles. Moreover, Fig. 6(c) again shows that the volumetric responses never go negative.

The in¯uences of contrast ratios of Young's moduli on the elastoplastic behavior of PRMMCs under
hydrostatic loading is illustrated in Fig. 7(a)±(c). We clearly observe that PRMMCs with the same elastic
properties between the two constituents never yield. The ``bend-over'' phenomenon is noted in Fig. 7(a)
along the aligned axisymmetric axis (11-direction) of prolate spheroids when Young's moduli of particles
are sti�er than that of the matrix. On the other hand, no such phenomenon occurs when prolate spheroids
feature weaker Young's modulus than that of the matrix, or when the stress±strain responses along the 22-
direction are plotted (Fig. 7(b)).

It is concluded that the ``bend-over'' phenomenon takes place due to the spheroidal particle shape; i.e.,
a 6� 1.

4. Mechanical behavior of PRMMCs under axisymmetric tension

In axisymmetric tension, the axisymmetric axis is parallel to the x1-axis and the overall stresses read

�r11 > 0; �r22 � �r33 � R�r11; �r12 � �r23 � �r31 � 0; �20�
where the stress ratio R is a real number and a function of loading history. Speci®cally, if R � 0, the uniaxial
loading case will be recovered. On the other hand, R � 1 recovers the purely hydrostatic loading case.

For simplicity, only constant R is considered in this section. Therefore, from axisymmetric loading
condition, the overall elastic strains are simpli®ed as

���e
ij� �

D11 � 2RD12 0 0
0 D12 � RD22 0
0 0 D12 � RD22

24 35�r11: �21�

Furthermore, the yield criterion can be written as

�F ��r11; �ep� � �1ÿ /�U�R��r11 ÿ
��
2
3

q
�ry � h��ep�q�6 0; �22�

where

U�R� �
��������������������������������������������������������������������������������
�T �1�11 � 2 �T �2�11 � 4R �T �1�12 � 4R2 �T �1�22 � �T �2�22

h ir
: �23�

After the plastic yielding, the overall incremental plastic strains read

�D��p
ij� �

�1ÿ /�Dk
U�R�

L11�R� 0 0
0 L22�R� 0
0 0 L22�R�

24 35 �24�

in which

L11�R� � �T �1�11 � 2R �T �1�12 � 2 �T �2�11 ; �25�
L22�R� � �T �1�12 � 2R �T �1�22 � 2R �T �2�22 : �26�
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Fig. 7. E�ects of Young's moduli of particles on the normalized overall elastoplastic responses in the (a) 11-direction, (b) 22-direction,

and (c) volumetric component for PRMMCs under pure hydrostatic loading.
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Again, Eq. (24) is valid for any arbitrary loading and unloading step. As before, if the loading is mono-
tonically increasing, then D��p

ij and Dk in Eq. (24) can be replaced by ��p
ij and k, respectively, to render the

overall (cumulative) plastic strains. The plastic consistency parameter k can be determined as

k � 1��������
2=3

p �1ÿ /�

��������
3=2

p �1ÿ /�U�R��r11 ÿ ry

h

" #1=q

: �27�

Therefore, by specifying the overall stress �r11 and the stress ratio R, the overall strains ��11 and ��22 can be
computed with the combination of Eqs. (21) and (24).

E�ects of R on mechanical behavior of PRMMCs are shown in Fig. 8(a)±(d). It is noted that the stress
ratio R has a signi®cant impact on the overall responses of PRMMCs. In Fig. 8(a) and (c), when R in-
creases from zero, the stress±strain behavior �r11 vs. ��11 of the axisymmetric direction of either prolate or
oblate spheroids becomes less nonlinear until the previously mentioned ``bend-over'' phenomenon occurs.
By contrast, as R decreases from 1.5, the corresponding behavior �r22 vs. ��22 of the lateral direction acts less
nonlinearly until the ``bend-over'' again takes place as shown in Fig. 8(b) and (d).

5. Initial yield surfaces of PRMMCs

Under general loading condition, the initial yield surface of PRMMCs can be obtained from Eq. (81) of
Ju and Sun (2000) as

�r : �T : �r � 2r2
y

3�1ÿ /�2 ; �28�

where �T is a fourth-rank tensor de®ned by Eq. (60) of Ju and Sun (2000). Alternatively, we can express
Eq. (28) in terms of the component form:

�T �1�11

h
� 2 �T �2�11

i
�r2

11 � �T �1�22

h
� 2 �T �2�22

i
�r2

22

�
� �r2

33

�
� 4 �T �2�12 �r2

12

�
� �r2

13

�
� 4 �T �2�22 �r2

23 � 2 �T �1�12 �r11��r22

� �r33� � 2 �T �1�22 �r22 �r33 �
2r2

y

3�1ÿ /�2 : �29�

As demonstrated by Drucker (1951, 1959), a necessary restriction for a valid yield surface is convexity.
Recently, Voyiadjis and Thiagarajan (1995) proposed a phenomenological anisotropic yield surface for
unidirectionally reinforced MMCs and proved the convexity of their yield surface. We shall prove the
convexity of our proposed yield surface in the following.

In order to achieve this objective, it is more convenient to employ the vector form of the second-rank
stress tensor �rij, which is de®ned as

f�rig � f�r11; �r22; �r33; �r23; �r31; �r12gT
: �30�

Accordingly, the yield surface in Eq. (28) can be rewritten as

f�rigT� �Tij�f�rjg �
2r2

y

3�1ÿ /�2 ; �31�

where the matrix form of �Tij is de®ned as
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Fig. 8. E�ects of stress ratios on the normalized overall elastoplastic responses in the (a) 11-direction (prolate spheroids with a � 5), (b)

22-direction (prolate spheroids with a � 5), (c) 11-direction (oblate spheroids with a � 0:5), and (d) 22-direction (oblate spheroids with

a � 0:5) for PRMMCs under axisymmetric loading.
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� �Tij� �

�T �1�11 � 2 �T �2�11
�T �1�12

�T �1�12 0 0 0
�T �1�12

�T �1�22 � 2 �T �2�22
�T �1�22 0 0 0

�T �1�12
�T �1�22

�T �1�22 � 2 �T �2�22 0 0 0

0 0 0 4 �T �2�22 0 0

0 0 0 0 4 �T �2�12 0

0 0 0 0 0 4 �T �2�12

26666666664

37777777775
: �32�

All eigenvalues of the above matrix are investigated here so as to prove the convexity of the proposed yield
surface. The convexity of the yield surface is guaranteed if all eigenvalues are positive, i.e., if the matrix �Tij is
positive-de®nite.

The six eigenvalues bi�i � 1; 2; . . . 6� of the matrix � �Tij� are solved as follows:

b1 � 2 �T �2�22 ; �33�

b2 � 4 �T �2�12 ; �34�

b3 � 4 �T �2�12 ; �35�

b4 � 4 �T �2�22 ; �36�

b5 � 1
2
�T �1�11 � �T �1�22 � �T �2�11 � �T �2�22 ÿ 1

2

�����������������������������������������������������������������������������������
�T �1�11 � 2 �T �2�11 ÿ 2 �T �1�22 ÿ 2 �T �2�22

h i2

� 8 �T �1�12

h i2
r

; �37�

b6 � 1
2
�T �1�11 � �T �1�22 � �T �2�11 � �T �2�22 � 1

2

�����������������������������������������������������������������������������������
�T �1�11 � 2 �T �2�11 ÿ 2 �T �1�22 ÿ 2 �T �2�22

h i2

� 8 �T �1�12

h i2
r

: �38�

After extensive, lengthy yet straightforward calculations, it is found that all the eigenvalues are positive.
Therefore, the proposed yield surface is convex.

We will now illustrate the initial yield surfaces of PRMMCs under the axisymmetric loading in which the
axisymmetric axis is parallel to the x1-axis. For convenience, the yield surfaces can be displayed in terms of
the mean stress �rm and the e�ective deviatoric stress �re which are de®ned as follows:

�rm � 1
3
�rkk � 1

3
��r11 � 2�r22�; �39�

�re �
����������
3
2
�sij�sij

q
� �r11 ÿ �r22; �40�

where �sij is the overall deviatoric stress tensor.
Figs. 9 and 10 exhibit the normalized overall yield surfaces of PRMMCs with either harder (Ep > Em) or

softer (Ep < Em) particles under axisymmetric loading by using the mean stress �rm and the e�ective devi-
atoric stress �re. From Fig. 9(a)±(b), it is observed that the initial yield point in terms of �re or �rm increases or
decreases, respectively, with increasing / for prolate spheroids. In particular, the decrease of yield point in
the �rm value has previously been discussed in Section 3 under pure hydrostatic tension. Near the small
intersection region of all yield surfaces, the yield points are insensitive to di�erent volume fractions of
prolate spheroids. In addition, Fig. 10(a) shows that the yield point in �re increases with increasing aspect
ratio a for PRMMCs with harder particles. By contrast, the yield point in �re is not very sensitive to the
aspect ratio a for PRMMCs with softer particles in Fig. 10(b). Fig. 10(a) illustrates that the composite with
harder spherical particles is more di�cult to yield than that with harder oblate spheroids. On the other
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Fig. 10. E�ects of aspect ratios of (a) harder and (b) softer particles on the normalized overall initial yield surfaces of PRMMCs.

Fig. 9. E�ects of volume fractions of prolate spheroidal (a) harder and (b) softer particles on the normalized overall initial yield

surfaces of PRMMCs.
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hand, Fig. 10(b) demonstrates that the composite with softer prolate particles is easier to yield than that of
softer spherical particles. Generally speaking, from Figs. 9 and 10, there is no clear choice of / or a which
would universally increase the yield surface under all loading conditions. This observation suggests that the
selection of optimal / or a for PRMMCs depends on the applied loading conditions.

There exist some experimental data on the yield surfaces of PRMMCs under multiaxial loading. For
example, Zhu et al. (1995) performed the biaxial tension±torsion tests to investigate the yield surfaces of the
silicon particle reinforced aluminum matrix composites. For this special case, the yield criterion in Eq. (29)
for our proposed model takes the form

�T �1�11

h
� 2 �T �2�11

i �r11

ry

 !2

� 4 �T �2�12

�sh

ry

 !2

� 2

3�1ÿ /�2 ; �41�

where the torsional shear stress �sh reads

�sh �
������������������
�r2

12 � �r2
13

q
: �42�

Emanating from Zhu et al. (1995), the aspect ratio of harder particles is taken as a � 1, and the volume
fractions of particles are chosen as / � 9:7% and 19:5%. Furthermore, the material properties of the
aluminum matrix are reported as Em � 70 GPa, mm � 0:3, and ry � 68:5 MPa (Zhu et al., 1995). The elastic
constants of silicon particles are chosen as Ep � 107 GPa and mp � 0:2 (Lynch et al., 1966) in the following
experimental validation.

Fig. 11 renders the comparison between the present predictions and experimental data on the yield
surfaces of particulate reinforced aluminum matrix composites for di�erent particle volume fractions (Zhu

Fig. 11. Comparisons with experimental yield surfaces of Si/Al composites (Zhu et al., 1995).
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et al., 1995). Solid lines correspond to the current predictions and the discrete points refer to the experi-
mental data. Generally, the yield surfaces of Si/Al composites are well modeled by the present formulation,
although some discrepancy in shear strength exists. It seems that the proposed yield criterion for PRMMCs
is quite satisfactory.

Furthermore, to illustrate the capability of the proposed framework, we proceed to predict initial yield
stresses for an elastically incompressible ductile matrix containing randomly located yet aligned spheroidal
voids. This special problem is one of main topics in micromechanical damage mechanics and has attracted
broad interest from many researchers. For example, Ponte Castaneda (1991) presented mathematical upper
bounds for the yield surfaces of porous materials. Moreover, Qiu and Weng (1993, 1995) derived a yield
criterion for ductile matrix materials containing aligned spheroidal inclusions through an energy approach.
They prove that their results are identical to Ponte Castaneda's bounds if the matrix material is elastically
incompressible and the inclusions are voids. In such a situation, as discussed in detail by Ju and Tseng
(1996) and Ju and Lee (2000), the present initial yield criterion under axisymmetric loading in Eq. (28) is
recast as
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ry
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� 4 �T �1�12
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ry
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� 4 �T �1�22
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� �T �2�22

i �r22

ry

" #2

� 2

3
: �43�

The above equation can also be expressed in terms of the mean stress �rm and the e�ective deviatoric stress
�re.

The comparisons between the present initial yield surfaces and the mathematical upper bounds under
axisymmetric loading with di�erent volume fractions and aspect ratios of voids are plotted in Fig. 12(a)±
(b), in which solid lines correspond to the upper bounds and the dash lines refer to the present predictions.
It is observed from Fig. 12(a) that our predictions fall within the corresponding upper bounds. In addition,

Fig. 12. Comparisons with upper bounds for ductile materials with di�erent (a) volume fractions and (b) aspect ratios of aligned

spheroidal voids.
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the yield surface shrinks inwards as the porosity / increases. It is emphasized that the present yield surface
recovers exactly the upper bound when voids become spherical, as proved by Ju and Tseng (1996). Again,
from Fig. 12(b), we notice that the present predictions are inside the corresponding upper bounds.

6. Elasto-viscoplastic behavior of PRMMCs

The proposed e�ective elastoplasticity formulation for PRMMCs can be easily extended to accommo-
date the rate-dependent viscoplasticity e�ect. Here, the viscoplastic model proposed by Duvaut and Lions
(1972) is employed. For the present isotropic hardening elastoplastic model, the corresponding rate
equations for Duvaut±Lions viscoplasticity are

_��vp � 1

g
C�ÿ1 : ��rÿ ��r�; �44�

_�evp � ÿ 1

g
��evp ÿ ��ep�; �45�

where g is a viscosity coe�cient and C� is the e�ective elasticity tensor as de®ned in Eq. (66) of Ju and Sun
(2000); and ��r and ��ep denote the stress tensor and hardening parameter, respectively, of the solution from the
inviscid elastoplastic problem. Moreover, _��vp, �r and _�evp signify the viscoplastic strain rate tensor, the total
stress tensor and the rate of the hardening parameter �evp, respectively.

Following Ju (1990) and Ju and Tseng (1997), the backward Euler discrete formulation of Eqs. (44) and
(45) can be expressed as

�rn�1 � 1

1� Dtn�1

g

�rn

�
� C� : D��n�1 � Dtn�1

g
��rn�1

�
; �46�

�evp
n�1 �

1

1� Dtn�1

g

�evp
n

�
� Dtn�1

g
��ep

n�1

�
; �47�

where Dtn�1 is the �n� 1�th time step and D�en�1 is the overall total strain increment.
Fig. 13(a)±(c) renders the overall elasto-viscoplastic behavior of PRMMCs under uniaxial tension. It is

shown in Fig. 13(a) that the overall responses of the Duvaut±Lion viscoplasticity lie between the elastic
predictor (g!1) and the inviscid plasticity solution (g! 0). In addition, Fig. 13(b) illustrates that the
viscoplastic behavior becomes more e�ective when the volume fraction of particles increases. From Fig.
13(c), we notice that the e�ect of reinforcement shape on the elasto-viscoplastic behavior of PRMMCs is
signi®cant. In particular, prolate and oblate spheroidal particles are the most and the least e�ective, re-
spectively, in strengthening the elasto-viscoplastic responses.

7. Conclusions

Emanating from the framework proposed by Ju and Sun (2000), e�ective elastoplastic constitutive
formulations are applied to various loading conditions for two-phase metal matrix composites containing
unidirectionally aligned and randomly located spheroidal inhomogeneities. We start by studying the uni-
axial elastoplastic stress±strain behavior of PRMMCs. Comparisons are performed among our theoretical
uniaxial predictions, experimental data of SiC/Al composites and existing ®nite element simulations to
demonstrate the potential of the proposed framework. The e�ect of stress triaxiality is subsequently ex-
plored under either the purely hydrostatic or axisymmetric loading upon the overall elastoplastic responses
of PRMMCs. In addition, the proposed initial e�ective yield surfaces for PRMMCs are simulated and
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Fig. 13. E�ects of (a) viscosity coe�cients, (b) volume fractions of particles, and (c) aspect ratios of particles on the normalized uniaxial

elasto-viscoplastic behavior of PRMMCs.
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compared with the corresponding results from experiments. The initial e�ective yield criterion for in-
compressible ductile matrix containing aligned spheroidal voids is investigated and compared with the
mathematical upper bound. The extension to viscoplasticity is also brie¯y discussed.

The proposed framework is capable of handling three-dimensional loading and unloading conditions.
Therefore, the proposed constitutive equations are promising for the analyses and computations of
structural components and systems made of PRMMCs. However, care should be taken in terms of the
range of the aspect ratio and particle volume fraction in connection with the proposed model. Speci®cally,
we should avoid extreme values of the aspect ratio and particle volume fraction.
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